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Objectives: To develop and validate an efficient and automatically

computational approach for stratifying glioma grades and predicting survival

of lower-grade glioma (LGG) patients using an integration of state-of-the-art

convolutional neural network (CNN) and radiomics.

Method: This retrospective study reviewed 470 preoperative MR images of

glioma from BraTs public dataset (n=269) and Jinling hospital (n=201). A fully

automated pipeline incorporating tumor segmentation and grading was

developed, which can avoid variability and subjectivity of manual

segmentations. First, an integrated approach by fusing CNN features and

radiomics features was employed to stratify glioma grades. Then, a deep-

radiomics signature based on the integrated approach for predicting survival of

LGG patients was developed and subsequently validated in an independent

cohort.

Results: The performance of tumor segmentation achieved a Dice coefficient

of 0.81. The intraclass correlation coefficients (ICCs) of the radiomics features

between the segmentation network and physicians were all over 0.75.

The performance of glioma grading based on integrated approach achieved

the area under the curve (AUC) of 0.958, showing the effectiveness of the

integrated approach. The multivariable Cox regression results demonstrated

that the deep-radiomics signature remained an independent prognostic factor

and the integrated nomogram showed significantly better performance than

the clinical nomogram in predicting overall survival of LGG patients (C-index:

0.865 vs. 0.796, P=0.005).

Conclusion: The proposed integrated approach can be noninvasively and

efficiently applied in prediction of gliomas grade and survival. Moreover, our
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fully automated pipeline successfully achieved computerized segmentation

instead of manual segmentation, which shows the potential to be a

reproducible approach in clinical practice.
KEYWORDS

automatic diagnosis, glioma grade, survival of lower-grade glioma, convolutional
neural network, radiomics
Introduction

Glioma is one of the most common malignant tumors of the

central nervous system, which is characterized by invasive

growth, contributing to high mortality and recurrence rates

(1–4). According to the standard classification of the World

Health Organization (WHO), glioma can be subdivided by their

malignancy into lower-grade glioma (grade II/III, LGG) and

higher-grade glioma (grade IV, HGG) (5, 6). Gliomas have a

wide range of prognoses depending on the WHO grade, with a

median survival of 14 months for HGG patients and is longer in

LGG patients as survival times of up to 10 years and longer can

be observed in Refs (7–9). LGG patients may have a longer

lifespan than HGG patients, and similarly, LGG patients may

develop into HGG patients over time (10). Although the recent

WHO recommendations mainly rely on tumor genomic profile

(2), histologic grading is a vital phenotypic measure. Nowadays,

pathological biopsy has been used for histological grading,

pathologists usually select the highest component from the

histopathology samples to predict the overall tumor grade,

which inevitably brings risks (11). Therefore, a non-invasive

and reproducible technique for glioma grading and prognosis

evaluation is of scientific and clinical value, which is helpful to

make treatment plans and preoperative prognostic analysis.

Among the numerous imaging techniques, MRI is the most

widely used imaging modality for the diagnosis and prognosis of

gliomas. It does not use ionizing radiation and provides versatile

contrast for various brain tissues (12), which can represent the

signal difference of many different gray levels while the naked

eyes can only distinguish 16 gray levels. Therefore,

comprehensive information has not been fully utilized to

analysis tumor heterogeneity in previous clinical practice and

is necessary to analysis by emerging artificial intelligence

technology. Radiomics is an emerging methodology that can

extract comprehensive and quantitative features from medical

images to predict tumor type, grade, genomic and

transcriptomic subtypes (13–16). However, most studies were

based on manually delineating tumor regions and then using

data mining algorithms such as machine learning to analysis (13,

15), which may inevitably lead to time-consuming and errors
02
from different raters. It may be a leap forward in the field of

computer-aided diagnosis if this hurdle can be resolved.

Therefore, it is important to develop an automated approach

to objectively and accurately predict the glioma grade and

survival of LGG patients.

Convolutional neural network (CNN), a type of deep

learning architecture, can exploit high-dimensional numeric

information from images by learning relevant features directly

from image signal intensities, which have been proven to be

particularly useful in medical image analysis (17). Although

several studies have employed MRI-based CNN models to

stratify glioma grades (18–26), few studies have applied CNN

to survival analysis, which may be due to the great differences in

individual survival time and the insufficiency of patients for

CNN training. In addition, among the studies of stratifying

tumor grades using CNN, it is mostly based on 2D MRI images

(20–22, 24–26), which inevitably loses the 3D spatial contextual

information. In particular, several studies have applied

radiomics features to predict prognosis of glioma (10, 27–29).

For example, Bae S et al. demonstrated that the radiomics

features extracted from multiparametric MRI have prognostic

value (30). In addition, among existing studies used CNN for

prognostic analysis (31–33), and most of these studies predict

overall survival (OS) of glioblastoma patients. As for LGG,

although most of the patients survive a long time, there is still

a large subset of patients who have a very short lifespan (34, 35).

To mitigate this limitation, we analyzed the prognostic factors of

LGG patients and developed a reproductive model to identify

LGG patients with poor prognosis in this study.

The purpose of this study was to propose an automated

approach for predicting glioma grade and overall survival for

LGG patients. First, we developed a CNN for the automated

tumor segmentation. Then, we developed a classifier for grading

that can integrate features extracted from 3D CNN network and

radiomics features. In addition, we constructed a deep-radiomics

signature using CNN and radiomics features, and validated the

hypothesis that the deep-radiomics signature was an

independent prognostic factor of LGG patients. Finally, a

prognostic nomogram was developed to predict the OS of

LGG patients and validated in an independently cohort.
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Materials and methods

This retrospective study was approved by the Institutional

Review Board of Jinling Hospital, Medical School of Nanjing

University. Informed consent was waived because of the use of

retrospective image data.
Data collection

This retrospective multicenter study enrolled patients who

were diagnosed as glioma. All patients were included in this

study by the following criteria: (1) both MRI sequences were

available before any treatment, (2) pathological results based on

WHO classification were available, (3) MRI images were

provided with T1, T1-Gd, T2 weighted sequences, and (4) All

MRI images have diagnostic image quality.

The first dataset is BraTS 2020 data (36–38) (denoted as

center A), which includes 293 HGG patients and 76 LGG

patients. All BraTS multimodal images were pre-operative

scans and have been segmented manually, by one to four

raters according to the same annotation protocol, with

annotations approved by experienced neuro-radiologists. All

the images have been skull-stripped, co-registered to the same

anatomical template and interpolated to the same resolution

(1×1×1 mm³).

The second dataset (denoted as center B) is from Jinling

Hospital including 89 HGG patients and 114 LGG patients. MRI

acquisition parameters are listed in Supplementary Material S1.

In correspondence with the first dataset, a preprocessing pipeline

including bias correction using N4ITK method (39), skull stripe,

registration, and intensity normalization was applied to all MRI

images. Each modality images were aligned into the same

geometric space using the General Registrations (BRAINS)

Toolbox in 3D Slicer (version 4.11, www.slicer.org), and

normalized independently by subtracting the mean and

dividing by the standard deviation of the brain region. After

registration, tumor regions of interest (ROI) were segmented

slice by slice using ITK-SNAP software (version 3.6.0-RC1;

http://www.itk-snap.org) on T1-Gd sequence. The ROI

segmentation was performed by two radiologists with more

than 10 years of experience in neuroimaging. All of them were

blinded to the clinical information of the patients. The ICCs

were used to evaluate the consistency of tumor extraction by

different physicians.

For tumor segmentation and grading, a total of 470 patients

were enrolled and they were randomly divided into the training

cohort (n = 284), validation cohort (n = 93) and test cohort (n =

93), with a ratio of 6:2:2.

For LGG survival analysis, the survival information of 61

LGG patients from April 2012 to June 2015 was published in first

dataset. The second dataset is an independent validation dataset
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composed of 112 LGG patients in Jinling Hospital of Nanjing

University from January 2018 to October 2021. OS of all patients

in two institution was calculated from the data of diagnosis until

death or last follow-up visit. The patient enrollment pathway

was presented in Figure S1.
Tumor segmentation and grading

Tumor segmentation was used as a preparation for

automated tumor classification, which was implemented by

CNN. For the network architecture, we have made a couple of

changes to the original 3D U-net proposed by Isensee et al.

(2019) (40), which mainly consists of encoder and decoder and is

shown in Figure S2. The top encoder is called context path,

which can generate more abstract image features for feature

extraction with the deepening of layers. At the bottom, the

decoder is called location path, which can gradually increase the

resolution by upsampling high-semantic features. In addition,

skip connections are used to combine the high spatial resolution

features in the context path with the low spatial resolution

features in the localization path to improve the segmentation

performance. Since the direct use of convolution cannot achieve

good performance in feature extraction, recombination blocks

are used to enhance the ability of feature extraction. As for

recombination blocks, the number of channels is increased by

convolution (kernel size:1×1×1, number of convolution kernels:

64). Then, the convolution is followed by a batch normalization

and a ReLu activation function as well as a convolution (kernel

size:3×3×3). Next, a squeeze-and-excitation block (SE Block)

(41) is adopted to improve the refinement ability of feature

information. Specifically, the encoder consists of a series of

modules, including four layers of recombination blocks, each

of which is followed by a max-pooling layer. The decoder

consists of four upsampling blocks corresponding to the

encoder, and each block contains a transposed convolution

(kernel size:2×2×2, stride=2) and a recombination block. The

last layer of the network is a softmax activation function that

produces tumor segmentation results. Due to the limitation of

computational resources, the batch size was set as 1 and total

training epochs were set as 200. Training was started with an

initial learning rate of 5 ×10-4. Learning rate was reduced by half

after 10 epochs if the validation loss did not improve. The loss

function in this study was a joint loss, which consisted of dice

loss and binary cross-entropy (BCE) loss. The total loss function

combined was defined as follow:

Ltotal = LDice + LBCE (1)

where,

LDice = 1 −
2 X*Y
�
�

�
�

Xj j + Yj j (2)
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LBCE =   −o
h,w

1 − Yð Þ log 1 − Xð Þ + Ylog Xð Þ (3)

where X and Y were the segmentation results and the

corresponding ground truth, h and w were the coordinates of

the pixel in X and Y.

In addition, the coordinate cropping method is used to

traverse all the segmentation results and obtain the coordinate

information of the tumor on the MRI image and select the slice

with the largest area as the size of the patches. Then, the

corresponding patches were cropped at the center of the

tumor on the MRI image to ensure that the tumor area is all

in the patches. Both radiomics and deep learning belong to the

field of machine learning. Radiomics extracts high-throughput

features using traditional algorithms, while deep learning

directly uses CNN to extract highly generalized features. The

workflow of tumor grading is provided in Figure 1.

All radiomic features were extracted by Pyradiomics (https://

pyradiomics.readthedocs.io). We used the open-source

“pyradiomics” package to extract the radiomics features of MRI

images (42). More detailed information about the radiomics

features can be found in Supplementary Material S2 (Table S1). It

is noteworthy that we attempted to use the result of segmentation

network as themask in radiomics feature extraction. ICCs (43) were

used to evaluate the consistency of tumor extraction between the

segmentation network and the physicians. To avoid feature

redundancy caused by the simultaneous use of radiomics features

from three sequences, the grading experiments conducted using

radiomics method in three sequences of MRI images respectively.

For deep CNN features, we used ResNet18 (44) as the

backbone of 3D CNN model. The four residual blocks in the
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ResNet18 backbone, including convolutional and pooling layers,

were implemented in 3D. In addition, a SE block which

adaptively recalibrated channel-wise feature responses by

explicitly modelling interdependencies between channels, was

added after the fourth residual block. This block was designed to

improve the performance of the model by exploring the

relationship of feature maps between different channels. The

tumor patches obtained by the coordinate cropping method in

the tumor segmentation experiment were firstly fed into the 3D

CNN network. Then, a total of 512 deep features obtained by the

average pooling layer after the fourth residual block from each

patient. The patch size of the input was set to 96×128×96. The

batch size and epochs of the CNN model training process were

set to 8 and 200, respectively. Finally, we combined radiomics

features with CNN features through a concatenation operation

to obtain a total of 1300 features for each patient.

For machine learning models, in the process of

dimensionality reduction for a large number of features, the

features related to the results should be retained as much as

possible, and the information carried by irrelevant features and

redundant features should be removed to prevent overfitting of

the classification model. The Z-Score normalization was used on

the features of the training cohort, which was aimed to

uniformly convert the magnitudes of different features into the

same magnitude to ensure that comparability between data. The

Levene’s test (45) and the least absolute shrinkage and selection

operator (LASSO) were used to select subsets of features. Next,

the random forest (46) was utilized to compare the contribution

of different features according to the importance of the features.

The number of trees was set to 100, and finally, eight features
FIGURE 1

Workflow of automatic tumor grading. Resnet18 was used to extract CNN features, and SVM was selected as the classifier.
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were acquired. The support vector machine (SVM) was used as

classifier due to its good performance (47). In this process, the

GridSearchCV algorithm (48) was used to search the optimal

penalty factor C and the gamma parameters for the SVM model

(49), where the former determined the tolerance of the samples,

and the later determined the number of support vectors.
Building of deep-radiomics signature

For the survival analysis of LGG patients, we developed a deep-

radiomics signature and conducted a multicenter analysis. Cox

regression models were established for the survival factors of

patients in center B, and independently validated in center A.

The workflow of this part is shown in Figure 2. Firstly, we developed

three radiomics models for predicting tumor prognosis based on

three modalities sequences to select the best sequence to reflect

potential tumor prognosis information. For the convenience of

modeling, the patients that lower than the median OS were assigned

as unfavorable prognosis, and the remaining patients were assigned

as favorable prognosis (50). The Levene’s test and random forest

algorithm were used in feature selection, and SVM was selected as

the classifier. Then we selected the sequence with the best

performance to extract radiomics features for building the deep-

radiomics signature. A total of 788 radiomics features were

extracted as radiomics features for each patient.

In CNN, ResNet18 was used as the backbone network. We

designed a classification-guided prediction strategy to

simultaneously perform the dual tasks of grading LGG patients

and regressing survival time on the network. The weights of the two
Frontiers in Oncology 05
tasks were shared during the training process. Through back

propagation, dual-task learning could complement each other by

sharing information and improved each other’s performance.

However, deep learning models required a lot of data for training.

To deal with the limitation of the small amount of data in survival

analysis, the transfer learning method was introduced to improve

the robustness and generalization ability of the model. We selected

the slice with the largest tumor area and used the weights pre-

trained by ImageNet (17) to assist our model to reduce a lot of

computational cost and make the model converge as soon as

possible. Considering the MRI images were single-channel images

and the images in ImageNet are three-channel, we fused T1, T2, and

T1-Gd weighted sequences on the channel so that the network

could obtained more information. The image size of the input was

3×240×240 and the batch size and epochs during training process

were set to 8 and 200, respectively. In total, 512 CNN features were

extracted as deep learning features for each patient.

Finally, multidimensional features obtained by fusing CNN

features and radiomics features were used for further analysis. All

features were normalized by Z-Score normalization. In feature

selection, the random forest algorithm was used to calculate the

correlation between features and survival time, and ten candidate

features were selected. Next, Elastic Net (51) was used to determine

feature weights and develop the deep-radiomics learning signature.
Building of prognostic nomogram

The candidate prognostic indicators included age, sex, tumor

location, WHO grade, laterality, histologic type and contrast
FIGURE 2

Workflow of developing deep-radiomics signature, the regression network was guided by the classification network. Elastic Net was used to
develop the deep radiomics signature.
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enhancement. To evaluate the potential association between the

deep-radiomics signature and OS, the median value of signatures

was determined as a threshold to divide patients into high-risk

group and low-risk group by using the X-tile software (50). The

Kaplan-Meier (KM) method was used to describe the survival

rates of the two groups, and the log-rank test was utilized to

compare the differences in the KM curves.

First, an integrated nomogram was developed in the training

cohort. Clinical factors and deep-radiomics signature were used

as candidate prognostic factors, and Cox regression models were

used for univariate and multivariate analyses of these factors. In

univariate and multivariate analyses, factors were dropped if P-

values of them were more than 0.05. Those independent factors

after the multivariate analysis were used to build integrated

nomogram. For fair comparison, a clinical nomogram was

developed using clinical factors. Then, both the integrated

nomogram and clinical nomogram were validated on the

internal and external validation cohorts. The discrimination

performance was measured using C-index. To compare the

difference between the predicted survival of the nomogram

and the observed survival, the calibration curve plots were

used to evaluate the calibration results.
Statistical analysis

In statistical analysis, continuous variables and categorical

variables were compared by Mann-Whitney U test and Chi-

square. The automated grading pipeline was conducted by using

python 3.7.3. As for prognostic analysis, the survival model

building was implemented by using R software, version 4.2.0

(http://www.R-project.org). The comparison of the AUC and the

C-index were implemented by using the Delong test. All

statistical tests were two-sided and variables with p<0.05 were

regarded significant.
Results

Clinical characteristics of the patients

For tumor grading, 470 patients were randomly divided into the

training cohort (177HGGs, 107LGGs, median age 58 years),

the validation cohort (58HGGs, 35LGGs, median age 55 years),

and the test cohort (58HGGs, 35LGGs, median age 56 years). Since

the validation cohort was used to supervise training and represent

the performance of the model during training, statistical analysis

was performed between the combination of training cohort with

validation cohort and the test cohort and the results showed that

there were no significant differences in age or tumor grade between

the two cohorts (age: P=0.539, grade: P=0.996).

In the survival analysis of LGG patients, 112 LGG patients

from Jinling Hospital were assigned to the training cohort, and
Frontiers in Oncology 06
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the BraTs dataset. No significant differences were found between

the training cohort and the validation cohort in terms of gender,

age, grade, laterality, tumor location, pathological type, OS, and

contrast enhancement in MRI (P>0.05). Table S2 summarized

the clinical characteristics of the training and validation cohorts.
Performance of tumor segmentation and
grading

The segmentation network was trained from scratch in an

image-to-image fashion. The segmentation performance of the

segmentation network was based on the Dice coefficient which

was 0.81. The interobserver ICCs ranged from 0.803 to 0.871,

indicating favorable consistency of tumor ROI extracted by

different physicians. The ICCs between segmentation CNN

and physicians ranged from 0.793 to 0.901. In radiomics

grading models, the radiomics model developed based on T1-

Gd sequence yielded the highest AUC, which was 0.894 (95% CI:

0.892-0.896). The detailed quantitative results including the

AUC, accuracy, sensitivity, and precision of the models were

shown in Table S3. Therefore, the radiomics features of T1-Gd

sequence was adopted in the next analysis. Ablation experiments

were conducted to demonstrate the effectiveness of the proposed

method. In the models based on integrated approach, the model

with SE attention block based on patches cropped by

segmentation results achieved the best performance with an

AUC of 0.958 (95% CI: 0.955–0.961), accuracy of 0.941,

sensitivity of 0.971, precision of 0.931. The experimental

results were shown in Table 1 (Figure S3).

To prove the benefits of using this integrated approach,

comparison experiments were conducted using the CNN method.

MRI images were fed as the input of the ResNet18 model, which

was consistent with the CNN features extraction part of the

integrated approach. A total of 512 CNN features were obtained

after the fourth residual block, and then through two fully

connected layers, the final classification result of CNN model can

be obtained. The parameters of the CNN model in the comparison

experiment, such as batch size and epoch, were consistent with

those in the integrated approach. As can be seen from Table 2, the

model trained on a CNN with SE block based on the patches

achieved the best performance, with an AUC of 0.852 (95% CI:

0.846–0.858), accuracy of 0.874, sensitivity of 0.931, precision of

0.841, which suggested the integrated approach outperformed the

CNN method (AUC: 0.958 vs. 0.852, P=0.013).
Building and validation of deep-
radiomics signature

In the experiments of predicting tumor prognosis using

radiomics method based on three modalities sequences, the
frontiersin.org

http://www.R-project.org
https://doi.org/10.3389/fonc.2022.969907
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.969907
radiomics model based on T1-Gd sequence yielded the highest

AUC, which was 0.783 (95% CI: 0.774-0.792). The radiomics

model based on T1WI and T2WI sequences yielded AUC of

0.754 (95% CI: 0.726–0.781) and 0.638 (95% CI: 0.606–0.670),

respectively. Therefore, the radiomics features extracted based

on T1-Gd sequence were adopted in the next analysis.

After feature fusion and feature selection, there were 10

image features including 6 features extracted from CNN and 4

features extracted from radiomics, the names of the features and

corresponding weights were detailed in Table S4. The median

value of the deep-radiomics signature in the training cohort was

used as the cutoff for stratifying patients into high-risk group

(deep-radiomics signature< 0.475) and low-risk group (deep-

radiomics signature ≥ 0.475). The patients in the low-risk group

achieved better OS than the high-risk group (P< 0.001). Then,

the same cutoff value was applied to the validation cohort and

yielded similar result. The Kaplan–Meier curves of high-risk and

low-risk groups in the training and validation cohorts were

illustrated in Figures 3A, B, which demonstrated deep-radiomics

signature was an independent prognostic factor.
Construction of clinical nomogram and
integrated nomogram

The age, grade, histologic type, contrast enhancement and

deep-radiomics signature were identified as prognostic factors

correlated to OS in the univariate analysis. Then, a multivariable

Cox regression model was developed using statistically

significant factors after the univariate Cox regression model.

The grade and contrast enhancement were dropped because they

failed to remain as independent prognostic factors (Table 3). An

integrated nomogram was built using prognostic factors

(Figure 3C). When establishing the model based on clinical

factors, age, grade, histologic type and contrast enhancement

were identified as independent prognostic factors and a clinical

nomogram was developed (Figure 3D; Table 4).
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In the internal validation, the integrated nomogram for

predicting survival at 1, 3, or 5 years achieved a C-index

(0.873, 95% CI: 0.840-0.906) and was outperformed than that

of the clinical nomogram (0.770, 95% CI: 0.720-0.820).

Consistent results can be found in the external validation,

where the C-index of the integrated nomogram (0.865, 95%

CI: 0.851-0.879) remained significantly higher than the clinical

nomogram (0.796, 95% CI: 0.787-0.805, P = 0.005). The results

of internal validation and external validation proved the

robustness of our proposed approach.

The calibration curves of nomograms were plotted in

Figure 4. The calibration curves showed good consistent

between the training cohort and the validation cohort, and the

calibration curve of the integrated nomogram also showed

better performance.
Discussion

In this study, we proposed an automated approach for

predicting glioma grade and survival of LGG patients using

CNN and radiomics. The segmentation network was used to

generate ROI masks for radiomics features extraction in an

automated pipeline and assisting the grading network to focus

on the tumor region without requiring the radiologist to

manually delineate the tumor region. ICCs were used to

evaluate the consistency between results of segmentation

network and ground truth annotated by radiologists in feature

extraction. In survival analysis, a deep-radiomics signature was

developed as a novel prognostic factor to predict OS of LGG

patients. Then, we developed an integrated nomogram, which

was constructed by incorporating the deep-radiomics signature

and clinical prognostic factors and independently validated in

the internal and external cohort.

CNN and radiomics analysis are representative quantitative

methods for image analysis, which can extract high-dimensional

and abstract numeric information beyond what is perceivable
TABLE 2 The experimental results of grading using CNN methods.

CNN methods AUC (95% CI) Accuracy Sensitivity Precision

Baseline (MRI patches) 0.846 (0.839, 0.855) 0.868 0.912 0.860

Baseline + SE module (MRI patches) 0.852 (0.846,0.858) 0.874 0.931 0.841

Baseline (complete MRI) 0.801 (0.794, 0.811) 0.822 0.873 0.797

Baseline + SE module (complete MRI) 0.794 (0.786, 0.802) 0.833 0.908 0.804
fro
TABLE 1 The experimental results of tumor grading using combination of CNN and radiomics methods.

Methods AUC (95% CI) Accuracy Sensitivity Precision

Baseline (MRI patches) 0.945 (0.938, 0.952) 0.922 0.923 0.962

Baseline + SE module (MRI patches) 0.958 (0.955,0.961) 0.941 0.971 0.931

Baseline (complete MRI) 0.904 (0.898, 0.910) 0.871 0.912 0.891

Baseline + SE module (complete MRI) 0.932 (0.928, 0.936) 0.881 0.901 0.872
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via the visual assessment of a given image (15). Multiple studies

have focused on the grading and survival analysis of glioma on

preoperative multimodal images using radiomics or deep

learning methods (29, 52–57). Although related studies using

CNN or radiomics methods have shown admirable

performance, both two methods have encountered many

difficulties when it comes to clinical practice. First, the

reproducibility of mask extraction is critical when analyzed by

CNN or radiomics method. In the related studies, especially in

radiomics-based survival analysis, masks were delineated

manually by radiologists, which required expensive time and

labor costs. Semi-supervised segmentation has also been applied

in tumor grading in recent years, but a fully automatic

segmentation is still an urgent need to achieve ideal

reproducibility. Second, CNN is an end-to-end training

network that obtains key information through convolution
Frontiers in Oncology 08
operation and often has excellent performance, but its

interpretability in feature extraction and selection is not

relatively good. Third, medical images are usually provided in

a three-dimensional format, 3D CNN network can fully obtain

the 3D shape and position information of the tumor, but the

construction of the 3D CNN network requires a large number of

images to train the network, so few studies use the 3D network to

analyze the glioma. A few studies have attempted to combine

CNN with radiomics for gliomas grading. One study with a total

of 252 patients developed an approach based on the combination

of radiomics features and 2D CNN features from multiplanar

reconstructed (MPR) images, which achieved the highest AUC

of 0.874 (58). Although this approach has shown good

performance, the masks used for feature extraction were

manually delineated, and the input of the CNN were the slices

with the largest tumor area and the two adjacent images, which
TABLE 3 Multivariate Cox regression analyses for overall survival in the training and validation cohorts of patients with LGG.

Characteristics Training cohort Validation cohort

HR (95% CI) P HR (95% CI) P

Age 1.03 (1.01-1.06) 0.003 1.08 (1.03-1.14) 0.003

Grade III vs. II; 1.96 (1.49-2.43) 0.188 3.77 (0.88 -6.66) 0.073

Histologic type, O vs. A 0.31 (0.06-0.56) <0.001 0.17 (0.04-0.30) 0.020

Histologic type, OA vs. A 2.27 (0.97-3.57) 0.060 1.44 (0.23-2.65) 0.699

Contrast enhancement vs. not enhanced 1.55 (0.86-2.24) 0.140 3.65 (1.85-5.45) 0.059

Signature above the median vs. below the median 5.69 (4.39-6.99) <0.001 6.28 (4.32-8.23) <0.001
frontiers
HR, Hazard Ratio; 95% CI, 95% Confidence Interval; O, Oligodendroglioma; A, Astrocytoma; OA, Oligoastrocytoma; Signature, Deep- radiomics signature.
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FIGURE 3

Kaplan-Meier plot for OS of patients stratified by the median value of deep-radiomics signature. Significantly favorable survival in low-risk
patients compared to high-risk patients was shown in the training cohort (A) and the validation cohort (B). Use of the developed integrated
nomogram (C) and clinical nomogram (D) estimated the OS for LGG.
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failed to provide the information of tumor comprehensively.

Another study designed a fully automatic process including

segmentation and grading, they selected 5 MRI slices of each

patient as the input of 2D CNN and added the shape and site

radiomics features to the fully connected layer to participate in

the training of CNN (59). However, the hybrid model failed to

explain improved performance compared to the CNN model

only. Radiomics features may be dropped during the training,

because authors cannot monitor the specific process of CNN

training. In the current study, given that the limitation of the

unbalanced patient categories, we attempted to randomly assign

the patients and merged the radiomics features with the CNN

features based on 3D network. Then, we applied the machine
Frontiers in Oncology 09
learning algorithm to reduce feature dimensions, which can not

only visualize the process of feature selection, but also make full

use of 3D CNN to extract spatial information of tumor. Through

ablation experiments, the combination of radiomics features and

features extracted from patches-based 3D CNN showed better

performance than other methods.

Radiomics has also been applied in the survival analysis of

glioma patients (28, 29, 54). However, to the best of our

knowledge, there are few glioma prognosis models based on

CNN methods. This may be due to the fact that CNN is an end-

to-end model, where the image features are iteratively calculated

in the network and cannot be intuitively visualized by

researchers. Hence, it is difficult to train a CNN model that
B

C D

A

FIGURE 4

The calibration curves of the integrated nomograms in training cohort (A) and the validation cohort (B), along with the clinical nomograms in
training cohort (C) and the validation cohort (D).
TABLE 4 Multivariate Cox regression analyses of clinical data for overall survival in the training and validation cohorts of patients with LGG.

Characteristic Training cohort Validation cohort

HR (95% CI) P HR (95% CI) P

Age 1.04 (1.02-1.06) <0.001 1.08 (1.03-1.14) 0.003

Grade III vs. II; 1.85 (1.49-2.21) 0.026 5.26 (1.95-8.57) 0.009

Histologic type, O vs. A 0.35 (0.19-0.51) <0.001 0.17 (0.04-0.30) 0.011

Histologic type, OA vs. A 2.22 (0.97-3.47) 0.059 2.38 (1.40-3.36) 0.017

Contrast enhancement vs. Not enhanced 3.26 (2.59-3.93) 0.032 5.57 (3.21-7.93) 0.002
frontiersi
HR, Hazard Ratio; 95% CI, 95% Confidence Interval; O, Oligodendroglioma; A, Astrocytoma; OA, Oligoastrocytoma.
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can predict patient survival on a limited dataset. In our study, the

deep-radiomics signature developed by radiomics and CNN was

used for the first time in the survival analysis of glioma, which

enabled high-throughput and abstract digital information to be

clearly recorded in feature extraction and selection, successfully

made full use of deep learning and radiomics features to

compensate for the imperfect interpretability of CNN. It is

worth noting that the classification-guided prediction strategy

was used on CNN to supervise the efficiency of learning, and the

useful information was mined as fully as possible by sharing

weights between the classification task and the regression task. In

related studies, one study has developed a radiomics signature

based on T2WI and FLAIR sequences for predicting overall

survival of LGG patients, with a C-index of 0.763 in the

validation cohort (54). Another study with 233 patients has

developed a radiomic risk score based on T2WI sequence using

linear calculation to predict prognosis in LGG patients (60).

Nonetheless, the pipelines of those studies are still limited by

some features and are not automated. Compared with those two

studies, we demonstrated the features from T1-Gd sequence

were better than those of T1WI and T2WI sequences in

predicting the survival of LGG patients. In the current study,

the pipeline of survival analysis was automated without masks

annotated by radiologist. We analyzed the difference between the

features extracted from delineation by radiologists and the

features extracted from the result of segmentation network to

validate the reproducibility of the fully automatic segmentation.

Moreover, it is worth noting that our signature was validated in a

new independent center, which ensured the robustness of

the model.

There are four main limitations of this study that are worth

discussing. First, although the patients enrolled in this study are

from two independent centers, it is necessary to enroll more

patients and more multiple centers to validate our proposed

approach. Second, our study is based on conventional structural

MRI images and does not use multimodal images for feature

extraction due to avoiding feature redundancy and data

limitation. Our approach may achieve better performance if

we add functional MRI images in this study. Third, molecular

subtypes are considered as an important factor, which can reflect

the prognosis of tumors to some extent. However, most hospitals

in China have not performed clinical molecular diagnosis for

LGG patients. Therefore, the molecular diagnosis result was not

available in our study. In addition, relatively large batch size may

further improve the performance of the segmentation network,

but the limited computing resources make it difficult to use large

batch sizes at present. In future work, we will explore the impact

of batch size on the segmentation performance and improve 3D-
Frontiers in Oncology 10
UNet for better segmentation performance, such as introducing

attention mechanism.
Conclusion

In this study, we developed a fully automated approach

combining CNN with radiomics in glioma grading and

prognostic analysis of LGG patients. Our proposed approach

can be easily integrated into the clinical setting that can be

widely used as a practical tool to facilitate patient diagnosis,

individualized treatment planning, and prognostic assessment

without additional healthcare expenses.
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